Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6499 -
Telegram Group & Telegram Channel
🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:
import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6499
Create:
Last Update:

🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:

import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6499

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ye


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA